CoboCards App FAQ & Wünsche Feedback
Sprache: Deutsch Sprache
Kostenlos registrieren  Login

Zu dieser Karteikarte gibt es einen kompletten Satz an Karteikarten. Kostenlos!

Alle Oberthemen / Informatik / Computergrafik / Schwerpunktkolloquium: Basic Techniques, Geometry Processing, Global Illumination
32
How are rotations represented by quaternions?
Quaternions are hypercomplex numbers

where
i^2 = j^2 = k^2 = ijk = -1

We define the conjugate
\bar{q} = a - ib - jc - kd
the dot product
\langle q, q' \rangle = aa' + ibb' + jcc' + kdd'
and the norm


By associating quaternions with vectors in , the product of two quaternions , can be written as a matrix-vector product



From the structure of these matrices, we can show the dot product equivalence






We can embed points into as follows:


It can be shown that unit quaternions represent rotations. In particular, given a rotation axis where \| n \| = 1 and an angle , we can construct


Then, this rotation can be computed as

p' = M_R(\bar{q}) M_L(q) p

Note that and \bar{q} represent the same rotation since both the rotation axis as the magnitude are inverted.

It turns out that
M_R(\bar{q}) M_L(q) = \begin{pmatrix} 1 & 0 \\ 0 & R_{n, \theta} \end{pmatrix}
Neuer Kommentar
Karteninfo:
Autor: janisborn
Oberthema: Informatik
Thema: Computergrafik
Schule / Uni: RWTH Aachen
Ort: Aachen
Veröffentlicht: 18.05.2022

Abbrechen
E-Mail

Passwort

Login    

Passwort vergessen?
Deutsch  English