Zu dieser Karteikarte gibt es einen kompletten Satz an Karteikarten. Kostenlos!
47
Explain parametrization using Least Squares Conformal Maps!
A parametrization is called conformal iff it is angle-preserving:

is conformal iff 
or

or
is orthogonal:

Furthermore, it
is conformal iff its inverse
is conformal.
conformal
conformal
orthogonal
orthogonal

Solve least squares problem

for parameters
. In order to get a unique solution, fix at least two points.
Computing Discrete Gradients
Computing

over a triangle given by corner vertices

and parameter values
.
For a point
inside the triangle, the interpolated value of
is



Geometrical derivation of
: Consider the triangle edge
. Along
,
does not change. Along the direction
,
changes most. The magnitude of the change is
, where
is the height of
on
. Thus,

We can compute the height
from the triangle area and base length:


Plugging this result back in gives

With this result, we get





or

or


Furthermore, it







Solve least squares problem

for parameters

Computing Discrete Gradients
Computing

over a triangle given by corner vertices

and parameter values

For a point





Geometrical derivation of











We can compute the height



Plugging this result back in gives

With this result, we get



Karteninfo:
Autor: janisborn
Oberthema: Informatik
Thema: Computergrafik
Schule / Uni: RWTH Aachen
Ort: Aachen
Veröffentlicht: 18.05.2022