Zu dieser Karteikarte gibt es einen kompletten Satz an Karteikarten. Kostenlos!
71
When to use k-NN and what are pros / cons?
k-NN works best when there is lots of data avaiable and the data has a small amount of features.
Pros:
Cons:
Pros:
- Easy to implement
- Very fast training
- No information loss
- high classification accuracy if lots of data is avaiable
- Intuitive interpretation
- Can have very complex decision boundaries
Cons:
- Requires lots of memory to store all the data samples
- Slow query time
- Sensitive to the local structure of the data
- The parameter k needs to be tuned
Tags:
Quelle: CI Teil 1 Lecture 6
Quelle: CI Teil 1 Lecture 6
Karteninfo:
Autor: Sepp Samuel
Oberthema: Telematik
Thema: Computational Intelligence
Schule / Uni: TU Graz
Veröffentlicht: 02.07.2014