Zu dieser Karteikarte gibt es einen kompletten Satz an Karteikarten. Kostenlos!
90
Zweidimensionaler χ2 - Test: Beschreibe das Vorgehen!
• Vorgehen identisch zu eindimension. Test
• Schätzung der erwarteten Zellhäufigkeiten Unter Annahme der stochastischen Unabhängigkeit):
(Zeilensumme * Spaltensumme) / N
• Vergleich mit beobachteten Häufigkeiten
• Für jede Zelle wird die quadrierte Abweichung zwischen beobachteter und erwarteter Häufigkeit gebildet und an der erwarteten Häufigkeit relativiert, die Summe ist der χ2-Wert
• χ2-Wert als Maß für die Abweichung der beobachteten von den erwarteten Werten.
• Ein hinreichend großer χ2-Wert erlaubt es, die Nullhypothese mit der Fehlerwahrscheinlichkeit α zurückzuweisen.
-> Signifikanzprüfung durch Ablesen in Tabelle unter Berücksichtigung der Freiheitsgrade;
df = (Anzahl Merkmal A -1 ) * (Anzahl Merkmal B - 1)
• Bei völliger Übereinstimmung der erwarteten und beobachteten Häufigkeiten resultiert ein χ2-Wert von Null. Die beiden Merkmale sind vollständig voneinander unabhängig.
• Unspezifische Testung, daher Betrachtung der deskriptiven Werte, wenn signifikant.
• SPSS ermöglicht außerdem die Berechnung
von standardisierten Residuen pro Zelle.
• Wenn diese größer sind als 2, kann davon
ausgegangen werden, dass in dieser Zelle
eine Besonderheit vorliegt.
• Schätzung der erwarteten Zellhäufigkeiten Unter Annahme der stochastischen Unabhängigkeit):
(Zeilensumme * Spaltensumme) / N
• Vergleich mit beobachteten Häufigkeiten
• Für jede Zelle wird die quadrierte Abweichung zwischen beobachteter und erwarteter Häufigkeit gebildet und an der erwarteten Häufigkeit relativiert, die Summe ist der χ2-Wert
• χ2-Wert als Maß für die Abweichung der beobachteten von den erwarteten Werten.
• Ein hinreichend großer χ2-Wert erlaubt es, die Nullhypothese mit der Fehlerwahrscheinlichkeit α zurückzuweisen.
-> Signifikanzprüfung durch Ablesen in Tabelle unter Berücksichtigung der Freiheitsgrade;
df = (Anzahl Merkmal A -1 ) * (Anzahl Merkmal B - 1)
• Bei völliger Übereinstimmung der erwarteten und beobachteten Häufigkeiten resultiert ein χ2-Wert von Null. Die beiden Merkmale sind vollständig voneinander unabhängig.
• Unspezifische Testung, daher Betrachtung der deskriptiven Werte, wenn signifikant.
• SPSS ermöglicht außerdem die Berechnung
von standardisierten Residuen pro Zelle.
• Wenn diese größer sind als 2, kann davon
ausgegangen werden, dass in dieser Zelle
eine Besonderheit vorliegt.
Tags: Chi-Quadrat-Test, VL07
Quelle:
Quelle: