Subtraction Property of Inequality
For every real number a,b, and c, if a>b, then a-c> b-c; if a<b, then a-c< b-c
Subtraction Property of Equality
fir every real number a, b, and c, if a=b then a-c=b-c.
Multiplication Property of Equality
For every real number a, b,and c, if a=b then a*c=b*c
Multiplication Property of Inequality
For every real number a and b, and for c>0, if a>b then ac>bc; if a<b, then ac<bc.
For every real number a and b, and for c<0, if a>b, then ac<bc; a<b, then ac<bc
For every real number a and b, and for c<0, if a>b, then ac<bc; a<b, then ac<bc
Divison Property of Equality
For every real number a, b, and c, with c not equal to 0, if a=b then a/c=b/c
Divisoin Property of Inequality
For every real number a and b, and for c>0, if a>b, then a/c > b/c; if a<b, then a/c < b/c
For every real number a and b, and for c>0, if a<b, then a/c < b/c; if a>b, then a/c>b/c
For every real number a and b, and for c>0, if a<b, then a/c < b/c; if a>b, then a/c>b/c
Transitive Property of Equality
For every real number a, b, and c, if a=b and b=c, then a=c
Transitive Property of Inequality
For every real number a, b, and c, if a<b and b<c, then a<c
Transitive Property of Inequality
For every real number a, b, and c, if a<b and b<c, then a<c
Kartensatzinfo:
Autor: CoboCards-User
Oberthema: Mathematics
Thema: General
Veröffentlicht: 12.01.2011
Schlagwörter Karten:
Alle Karten (25)
keine Schlagwörter