This flashcard is just one of a free flashcard set. See all flashcards!
30
RSA Signatur
• Schlüsselgenerierung (wie bei RSA-Kryptosystem):
p=31,q=41 ⇒ n=31∗41=1271
φ(n)=(p−1)(q−1)=(31−1)(41−1)=30∗40=1200 – e = 7 erfüllt Bedingungen e > 1 und ggT(7, 1200) = 1
– mit erw. euklidischen Algorithmus erhalte d = e−1 = 343
• Signatur einer Nachricht m = 42 mit Private Key d = 343:
– berechne s(d, m) = s(343, 42) = 42343 mod 1271 = 83
• Signatur s = 83 zu Nachricht m = 42 mit Public Key (n, e) = (1271, 7) verifizieren:
– berechne s^e mod n=837 mod1271=42
– stimmt mit m = 42 überein
p=31,q=41 ⇒ n=31∗41=1271
φ(n)=(p−1)(q−1)=(31−1)(41−1)=30∗40=1200 – e = 7 erfüllt Bedingungen e > 1 und ggT(7, 1200) = 1
– mit erw. euklidischen Algorithmus erhalte d = e−1 = 343
• Signatur einer Nachricht m = 42 mit Private Key d = 343:
– berechne s(d, m) = s(343, 42) = 42343 mod 1271 = 83
• Signatur s = 83 zu Nachricht m = 42 mit Public Key (n, e) = (1271, 7) verifizieren:
– berechne s^e mod n=837 mod1271=42
– stimmt mit m = 42 überein
Flashcard info:
Author: @destructive_influen...
Main topic: Kryptographie
Topic: Kryptographie
School / Univ.: DHBW Stuttgart
City: Stuttgart
Published: 09.02.2017