Theorem 0.1 Division Algorithm
Let
and
be integers with
. Then
unique integers
and
with the property that
, where
.
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
![](/pool/data/tex/92eb5ffee6ae2fec3ad71c777531578f.gif)
![](/pool/data/tex/539fa66a54d60fdbd6278ccebed13ddd.gif)
![](/pool/data/tex/32ff223f4b9214ce44a3f7cac5abe8bf.gif)
![](/pool/data/tex/7694f4a66316e53c8cdd9d9954bd611d.gif)
![](/pool/data/tex/4b43b0aee35624cd95b910189b3dc231.gif)
![](/pool/data/tex/8efe889996b08868dd95d062ebd16b02.gif)
![](/pool/data/tex/d905ec925b1dad2fc822004886a1cd58.gif)
Theorem 0.2 GCD is a Linear Combination
For any nonzero integers
and
integers
and
gcd(
)
. Moreover, gcd(
) is the smallest positive integer of the form
.
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
![](/pool/data/tex/fb2dfc5827ee42216c970a13e946bcb8.gif)
![](/pool/data/tex/03c7c0ace395d80182db07ae2c30f034.gif)
![](/pool/data/tex/c4386661cdbfeb14091974beb44212cb.gif)
![](/pool/data/tex/b345e1dc09f20fdefdea469f09167892.gif)
![](/pool/data/tex/da00c47e34421236c72066f6eedd6bed.gif)
![](/pool/data/tex/b345e1dc09f20fdefdea469f09167892.gif)
![](/pool/data/tex/eb780626a267f692d8fbda9fc8bd1353.gif)
Theorem 0.3 Fundamental Theorem of Arithmetic
Every integer greater than 1 is a prime or the unique product of primes.
Theorem 0.4 First Principle of Mathematical Induction
Let
be a set of integers containing
. Suppose
has the property that whenever some integer
, then the integer
. Then,
contains every integer greater than or equal to
.
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/bd3d23ebfc095f6e40e79ad3218c0568.gif)
![](/pool/data/tex/a0a635529564319ca6228d8dae9a3b5c.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
Theorem 0.5 Second Principle of Mathematical Induction
Let
be a set of integers containing
. Suppose
has the property that
whenever every integer less than
and greater than or equal to
belongs to
. Then,
contains every integer greater than or equal to ![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/a283ab90e4208ceec5489f3640c12e17.gif)
![](/pool/data/tex/7b8b965ad4bca0e41ab51de7b31363a1.gif)
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
Equivalence Relation
An equivelence relation on a set S is a set R of ordered pairs ot elements of S such that:
(
(reflexive)
implies
(symmetric)
and
imply
(transitive)
(
![](/pool/data/tex/02f4b1da7591388c95d7f9ad3faf0955.gif)
![](/pool/data/tex/23fd0ebe8165e5b5902e582446705c42.gif)
![](/pool/data/tex/9aef698aecf22681ee6fd09a29c9d108.gif)
![](/pool/data/tex/ea131b1920dcd9954239de9fccf026b7.gif)
![](/pool/data/tex/dcae0e439d8d36cfeeb1c373047a5364.gif)
![](/pool/data/tex/fedaaf728012185a260aec33aaefa05d.gif)
Partition
A partition of a set
is a collection of nonempty disjoint subsets of
whose unions is
.
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
Theorem 0.6 Equivalence Classes Partition
The equivalence classes of an equivalence relation on a set
constitute a partition of
. Conversely, for any partition
of
, there is an equivalence relation on
whose equivalence classes are the elements of ![](/pool/data/tex/44c29edb103a2872f519ad0c9a0fdaaa.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/44c29edb103a2872f519ad0c9a0fdaaa.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/5dbc98dcc983a70728bd082d1a47546e.gif)
![](/pool/data/tex/44c29edb103a2872f519ad0c9a0fdaaa.gif)
Function (Mapping)
A function (or mapping)
from a set
to a set
is a rule that assigns to each element
of
exactly one element
of
. The set
is called the domain of
and
is called the range of
. If
assigns
to
, then
is called the image of
under
. The subset of
comprising all the images of elements of
is called the image of A under
.
![](/pool/data/tex/1ed346930917426bc46d41e22cc525ec.gif)
![](/pool/data/tex/7fc56270e7a70fa81a5935b72eacbe29.gif)
![](/pool/data/tex/9d5ed678fe57bcca610140957afab571.gif)
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
![](/pool/data/tex/7fc56270e7a70fa81a5935b72eacbe29.gif)
![](/pool/data/tex/92eb5ffee6ae2fec3ad71c777531578f.gif)
![](/pool/data/tex/9d5ed678fe57bcca610140957afab571.gif)
![](/pool/data/tex/7fc56270e7a70fa81a5935b72eacbe29.gif)
![](/pool/data/tex/1ed346930917426bc46d41e22cc525ec.gif)
![](/pool/data/tex/9d5ed678fe57bcca610140957afab571.gif)
![](/pool/data/tex/1ed346930917426bc46d41e22cc525ec.gif)
![](/pool/data/tex/1ed346930917426bc46d41e22cc525ec.gif)
![](/pool/data/tex/92eb5ffee6ae2fec3ad71c777531578f.gif)
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
![](/pool/data/tex/92eb5ffee6ae2fec3ad71c777531578f.gif)
![](/pool/data/tex/0cc175b9c0f1b6a831c399e269772661.gif)
![](/pool/data/tex/1ed346930917426bc46d41e22cc525ec.gif)
![](/pool/data/tex/9d5ed678fe57bcca610140957afab571.gif)
![](/pool/data/tex/7fc56270e7a70fa81a5935b72eacbe29.gif)
![](/pool/data/tex/1ed346930917426bc46d41e22cc525ec.gif)
![](/pool/img/avatar_40_40.gif)
Kartensatzinfo:
Autor: Squiggleart
Oberthema: Mathematics
Thema: Abstract Algebra
Schule / Uni: West Chester University
Veröffentlicht: 25.05.2011
Tags: Algebra
Schlagwörter Karten:
Alle Karten (10)
keine Schlagwörter