CoboCards App FAQ & Wünsche Feedback
Sprache: Deutsch Sprache
Kostenlos registrieren  Login

Hol' Dir diese Lernkarten, lerne & bestehe Prüfungen. Kostenlos! Auch auf iPhone/Android!

E-Mail eingeben: und Kartensatz kostenlos importieren.  
Und Los!
Alle Oberthemen / Statistik / Inferenzstatistik

Inferenzstatistik (167 Karten)

Sag Danke
118
Kartenlink
0
Was wird besonders bei der Regressionsanalyse deutlich?
der Einfluss einer oder mehrerer Variablen auf eine andere Variable
Tags: Regressionsanalyse, VL 09
Quelle:
119
Kartenlink
0
Was ist der Vorteil der Regressionsanalyse ggü. der Varianzanalyse?
der relative Beitrag verschiedener Variablen zur Erklärung eines Wertes wird deutlich
Tags: Regressionsanalyse, VL 09
Quelle:
120
Kartenlink
0
a) Nenne Beispiele für eine Studie mit Regressionsanalyse!
b) Was will die Regressionsanalyse allgemein umschrieben vorhersagen?
c) wie werden die relevanten Variablen genannt und wonach bestimmt?
a) Bsp.: Wie stark ist der Einfluss von Alter, Bildungsstand, Geschlecht, vorheriger Stimmung und Beschäftigung in der Pause auf die Leistung im Rechentest?

b) Allg.: Methode zur Vorhersage eines Merkmals y aus einem Merkmal x.

c) es wird zwischen unabhängiger und abhängiger Variable unterschieden
y = Kriterium (AV: wird vorhergesagt)
x = Prädiktor (UV, sagt vorher)

inhaltliche Erwägungen, welche Variable als Prädiktor und welche als Kriterium dient.
Tags: Regressionsanalyse, VL 09
Quelle:
121
Kartenlink
0
Welche Arten von Regressionsanalysen gibt es? Wie unterscheiden sie sich grob gesagt inhaltlich?
einfache lineare Regression als Grundlage
(-> deskrpt. Stat.); nur ein Kriterium und ein Prädiktor wird verwendet

Multiple Regression  wird eingesetzt, wenn eine Kriteriumsvariable von mehr als einer unabhängigen Variable vorhergesagt werden soll

Moderierte Regression = nicht-lineare Regression, in der die multiple Regression um das Produkt aus zwei Prädiktorvariablen erweitert wird.
Tags: Regressionsanalyse, VL 09
Quelle:
122
Kartenlink
0
Welches Verfahren zum Zusammenhang von zwei Variablen kennst du außer der linearen Regression noch? Worin besteht der Unterschied?
bisher bekanntes Verfahren zum Zusammenhang von zwei Variablen: Korrelation. Rechnerisch sind Korrelation und Regression eng miteinander verknüpft.

Bsp.: Produkt-Moment-Korrelation:
- Korrelationswert (r) kann nur Werte zwischen -1 und +1 annehmen -> pos./neg./kein Zusammenhang zwischen x und y
- weitere Korrelationen: Rangkorr., Punktbiserale Korr., Punktbiserale Rangkorrelation (siehe Tabelle -> Skalenniveau)
- Für jeden x-Wert lässt sich der zugehörige y-Wert an einer Geraden ablesen.
- Bsp.: funktionaler Zus.hang zw. Masse u. Gewichtskraft
- Frage: Ist das auch möglich für stochastische, d.h. unvollkommene Zusammenhänge?
Ziel des Verfahrens lineare Regression: stochastischen Zusammenhang zwischen zwei Variablen durch lineare Funktion wiedergeben; Punktewolke wird durch eine einzige,
möglichst repräsentative Gerade ersetzt
Tags: Regressionsanalyse, VL 09
Quelle:
123
Kartenlink
0
Wie lautet die Gleichung für die lineare Regression? Erkläre die Bestandteile.

- Steigung dieser Geraden =  (Regressionsgewicht)
- Höhenlage (y-Achsen-Abschnitt) = a
- Variable y wird mit einem ^ gekennzeichnet, da es geschätzt wird (hypothetische Werte werden vorhergesagt, die nicht unbedingt mit den tatsächl. Werten übereinst.).
- Funktion liefert für jeden Wert xi  einen zugehörigen Wert ^y
  Dieser vorhergesagte Wert kann jedoch von dem empirischen Wert yi abweichen.
- Parameter b und a müssen bestimmt werden
Tags: Regressionsanalyse, VL 09
Quelle:
124
Kartenlink
0
Was kann man über eine optimale Gerade der linearen Regression sagen?
- gibt einen Punkteschwarm am besten wieder
- über alle Vpn hinweg ist der Vorhersagefehler am kleinsten
Tags: Regressionsanalyse, VL 09
Quelle:
125
Kartenlink
0
Wie wird die Gerade der linearen Regression gelegt?
die Gerade wird so gelegt, dass die Summe der Quadrate aller Abweichungen der empirischen y-Werte von den vorhergesagten y-Werten möglichst klein wird
= Methode der kleinsten Abweichungsquadrate


Abweichung der amp. Werte von den vorhergesagten Werten
Tags: Regressionsanalyse, VL 09
Quelle:
126
Kartenlink
0
Wie lautet die Formel für die Steigung b und die der Höhenlage a zur linearen Regression?
Tags: Regressionsanalyse, VL 09
Quelle:
127
Kartenlink
0
Welcher Vorteil ergibt sich, wenn die Regressionsgleichung zwischen 2 Variablen bekannt ist?
Ist die Regressionsgleichung zwischen zwei Variablen bekannt, lässt sich zu einem beliebigen Wert der Prädiktorvariable der zugehörige Kriteriumswert prognostizieren.
Tags: Regressionsanalyse, VL 09
Quelle:
128
Kartenlink
0
Wie geht man vor, wenn man aus einer Regressionsgleichung zu einer Prädiktorvariablen den zugehörigen Kriteriumswert prognostizieren möchte? (Bsp. Alkoholkonzentration und Reaktionszeit)
- Mittelwerte und Varianz aus Daten errechnen
- Kovarianz aus Prädiktor u. Kriteriumsvariable errechnen
- Steigung errechnen


-> positive Steigung: Reaktionszeit steigt um ~54 ms, wenn man auf der x-Achse eine Einheit weiter geht
- Höhenlage (=Gerade schneidet y-Achse):


-> Nach Einsetzen i. d. Gleichung ergibt sich die vollst. Fkts.gleichung d. ges. Regressionsgerade: y = 54,03*x + 596,29
Es kann bestimmt werden, welche Reaktionszeit bei einer Konzentration von 0,8 Promille zu erwarten ist.
Tags: Regressionsanalyse, VL 09
Quelle:
129
Kartenlink
0
Was ist bei dichotom nominalskalierten Prädiktoren zu beachten?
In der Statistik versteht man unter einer dichotomen (oder binären Variablen) eine Variable, die zwei Ausprägungen hat, zum Beispiel die Variable Geschlecht mit den beiden Ausprägungen weiblich und männlich.

- Bildung einer Dummy-Variablen nötig
- Kategorien werden mit 0 und 1 kodiert
- ein Test der Steigung auf Signifikanz ergibt identische
  Resultate
, wie ein t-Test für unabh. Stichpr.
- Methode nur bei linearen Zusammenhängen anwenden!
- Post-hoc muss das Streudiagramm überprüft werden, um
  Fehlschlüsse zu vermeiden!
Tags: Regressionsanalyse, VL 09
Quelle: wikipedia, Skript
130
Kartenlink
0
Was gibt das Regressionsgewicht b an? Nenne ein Beispiel und weitere Eigenschaften.
- gibt an, um wieviele Einheiten der Originalmetrik sich das Kriterium y verändert, wenn man den Prädiktor x um eine Einheit der Originalmetrik erhöht.
- Bspw. je Promille erhöht sich d. Reaktionszeit um 54 ms.
- unstandardisiertes Regressionsgewicht:
weil die ursprgl. Maßeinheiten erhalten bleiben.
muss von der Originalmetrik der untersuchten Merkmale bereingit werden, d.h. b wird in den Zähler- u. Nennereinheiten an der Streuung der jeweiligen Merkmale relativiert.
Tags: Regressionsanalyse, VL 09
Quelle:
131
Kartenlink
0
Wie heißt das (resultierende) standardisierte Regressionsgewicht und was macht es möglich? Was sind weitere Eigenschaften?
Beta-Gewicht:
- Vergleich zwischen Regressionen wird möglich
- der Koeffizient Beta ist von den Maßeinheiten der untersuchten
  Merkmale unabhängig
- drückt aus, um wieviele Standartabweichungen sich y verändert,
  wenn sich x um eine Stadardabweichung vergrößert
[- im Fall der einfachen Regression ist der Koeffizient Beta identisch
   mit dem Wert r aus der Produkt-Moment-Korrelation]
Tags: Regressionsanalyse, VL 09
Quelle:
132
Kartenlink
0
Wie und warum lässt sich die Signifikanz von Regressionsgewichten testen? Wie lautet das Maß für die Güte einer Regression?
- beurteilen, ob Merkmal X ein Merkmal Y stat. bedeutsam
  vorhersagt

- funktioniert ähnlich wie t-Test
- Prüfgröße t bilden, indem d. unstandardisierte Regressionskoeff. b
  an seinem Standardfehler relativiert wird
- Standardfehler schätzt die Streuuung der emp. Regr.koeffizienten
  um den wahren Populationswert -> analog z. Mittelwertsdifferenz
  beim t-Test
- je größer b und je kleiner der Standardfehler, desto größer der
  t-Wert und desto eher kann die H0 verworfen werden
- Gütemaß einer Regression: Determinationskoeffizient r^2
   (Effektstärkemaß)
Tags: Regressionsanalyse, VL 09
Quelle:
133
Kartenlink
0
Wie kann man angeben, wieviel Prozent der gesamten Varianz durch die Regression (also durch die Varianz der x-und y-Werte) erklärbar ist?
der Determinationskoeffizient r^2   *   100
= Prozentsatz


anschauliches Maß für den Zusammenhang zweier Variablen:
Beispiel: Determinationskoeffizient von 0,6 bedeutet, dass 60% der Varianz der y-Werte durch die Kenntnis der Prädiktorvariable x aufgeklärt werden können.
Tags: Regressionsanalyse, VL 09
Quelle:
134
Kartenlink
0
Was sind die Vorraussetzungen für lineare Regression?
- Kriterium: intervallskaliert und normalverteilt
- Prädiktor: intervallskaliert und normalverteilt
                  oder dichotom nominalskaliert
- Einzelwerte verschiedener Vpn:
  voneinander unabh. zustande gekommen
- Zusammenhang der Variablen: (theoretisch) linear
- Streuung der zu einem x-Wert gehörenden y-Werte:
  über den ganzen Wertebereich von x homogen*
(*Homoskedastizität)
Tags: Regressionsanalyse, VL 09
Quelle:
Kartensatzinfo:
Autor: P-H-I-L
Oberthema: Statistik
Thema: Inferenzstatistik
Veröffentlicht: 13.04.2010
 
Schlagwörter Karten:
Alle Karten (167)
Chi-Quadrat-Test (12)
Clusteranalyse (21)
Effektstärke (2)
Entscheidungsbaum (1)
kritische Reflektion (1)
Kruskal-Wallis (4)
Multiple Regression (8)
Multiple Regrssion (1)
Regressionsanalyse (24)
Tutorium (2)
Übung (6)
Varianzanalyse (68)
VL 09 (17)
VL 10 (15)
Vl 10 (2)
VL 11 (15)
Vl 11 (1)
VL03 (14)
VL04 (22)
VL05 (11)
VL06 (2)
VL07 (11)
VL08 (21)
Missbrauch melden

Abbrechen
E-Mail

Passwort

Login    

Passwort vergessen?
Deutsch  English