This flashcard is just one of a free flashcard set. See all flashcards!
13
Let
be a Vector field for
. When is X differentiable and how is
for
defined?
![](/pool/data/tex/a9c4a757e0209f6800e7030aab2fa550.gif)
![](/pool/data/tex/bf8890327ade5557c41da1d1f76f316f.gif)
![](/pool/data/tex/7a0d8bac36214949a7e13b5daa84bcbb.gif)
![](/pool/data/tex/1cb72d5ecb6522c03b7ec8efb00e8199.gif)
X is differentiable if
is differentiable.
![](/pool/data/tex/ea8c2acaf7f96ce404b1b9d1823e1f15.gif)
![](/pool/data/tex/98a21915ef98a821042005bd95abc9d9.gif)
![](/pool/data/tex/063975af34f78047563765be275653d0.gif)
![](/pool/data/tex/ea8c2acaf7f96ce404b1b9d1823e1f15.gif)
![](/pool/data/tex/98a21915ef98a821042005bd95abc9d9.gif)
![](/pool/img/avatar_40_40.gif)
Flashcard info:
Author: Yann-Paul
Main topic: Mathematik
Topic: Differentialgeometrie123
Published: 15.11.2018
den zweiten Ausdruck verstehe ich irgendwie nicht ganz, was ist DF(u)invers?