CoboCards App FAQ & Wünsche Feedback
Sprache: Deutsch Sprache
Kostenlos registrieren  Login

Hol' Dir diese Lernkarten, lerne & bestehe Prüfungen. Kostenlos! Auch auf iPhone/Android!

E-Mail eingeben: und Kartensatz kostenlos importieren.  
Und Los!
Alle Oberthemen / Biologie / Abiturwissen

Biologie Abitur 2013 (158 Karten)

Sag Danke
36
Kartenlink
0
Reiz-Reaktionsbogen
Reiz
Sinnesorgan
afferente Bahn (Erregung!) über Nervenzellen
Gehirn/Rückenmark
efferente Bahn
Muskel/Drüse/Erfolgsorgan
Reaktion

Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
37
Kartenlink
0
Reizdefinition
physikalische o. chemische Einwirkung aus der Umwelt oder aus dem Körperinneren, die bestimmte Zellen (Sinneszellen) erregt
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
38
Kartenlink
0
adäquater Reiz
zum Rezeptor passend und ausreichend stark
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
39
Kartenlink
0
Aufbau und Funktion des Neurons
Dendriten und Somamembran: Signalaufnahme
Axonhügel: Signalauslösung -> zusammengeführt und verrechnet, Auslösung elektrischer Signale
Axon mit Myelinhüllen/ Schwannschen Zellen und Ranvierschen Schürringen: Signalfortleitung (saltatorisch)
Synapse: Signalübertragung auf Zielzelle,
Neurotransmitter werden in den synaptischen Spalt freigesetzt: elektrisches Signal zu chemischem Signal umgewandelt -> Diffusion zu spezifischen Rezeptoren
-> Reaktion

Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
40
Kartenlink
0
Ruhepotenzial
Potenzialdifferenz von ca. -70 mV durch unterschiedliche Verteilung und Konzentration von Ionen beiderseits der Axonmembran

Vorraussetzung: Beschaffenheit Membran
1. selektiv permeabel durch Kanäle
  • K+Ionen 100 % innen viel außen wenig: streben nach Diffusionsgesetzen nach außen, werden von A- (organische Anionen) zurückgehalten (0%)
  • nur wenige können die Membran passieren: Ein- und Austritt ungefähr gleich
  • Membranpotenzial = Gleichgewichtspotenzial
  • Cl-Ionen 45 % innen wenig außen viel: streben nach innen, werden von A- abgestoßen und von K+ und Na+ (4%) angezogen
  • alle Ionensorten sind am Aufbau des RP beteiligt
  • Gleichgewicht der treibenden Kräfte: Konzentrationsgefälle, Diffusionspotenzial, elektrostatisches Potenzial = RP


2. aktiver Transportmechanismus Natrium-Kalium-Ionenpumpe
  • Na+ und K+ diffundieren ständig in geringem Maße -> stören das Gleichgewicht (würden Potenzialdifferenz ausgleichen)
  • befördert 2 K+ nach innen und 3 Na+ nach außen
  • durch Tunnelproteine und unter ATP Aufwand

Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
41
Kartenlink
18
Aktionspotenzial
1. Ruhepotenzial: -70 mV
2. Öffnung einiger Na+-Kanäle
  • Beginn Depolarisation
  • Diffusion Na+ nach innen
  • Spannung wird geringer

3. Öffnung weiterer Na+-Kanäle
  • Schwellenwert -50 mV
  • spannungsgesteuerte Ionenkanäle
  • Diffusions- und elektrostatisches Potenzial: Na+ ins Innere
  • fortschreitende Depolarisation
  • Umkehr der Ladung 30 mV

4. Öffnung K+-Kanäle & beginnende Schließung Na+
  • spannungsgesteuerte Kaliumkanäle
  • K+ strömen nach außen
  • Repolarisation bis Hyperpolarisation (-75 mV)
  • langsamer als Na+

5. Schließung K+Kanäle
  • Na+K+Ionenpumpen stellen ursprüngliches Verhältnis wieder her
  • Ruhepotenzial

Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
42
Kartenlink
0
Refraktärzeit
Zeit, bis wieder AP ausgelöst werden können
-> bis Na+ Kanäle wieder erregbar sind
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
43
Kartenlink
0
kontinuierliche Erregungsleitung
  • einströmende Na+ Ionen werden von Anionen der Umgebung angezogen
  • Depolarisation räumlich daneben durch diese Natrium-Ausgleichströme
  • neues Aktionspotenzial
  • durch Refraktärzeit kein Rückwärtslaufen möglich
  • durch "Alles-oder-nichts"-Gesetz Weiterleitung ohne Verlust -> AP immer gleiche Form (Frequenzcodierung!)


AP nur an Axon oder -hügel auslösbar!
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
44
Kartenlink
0
saltatorische Erregungsleitung
  • Axone können von Hüllzellen umgeben sein
  • wie Isolatoren
  • im Bereich der Ranvierschen Schnürringe haben Na+ Kontakt zur Außenmembran und Ionenkanäle und -pumpen wirken
  • sehr schnelle Ausgleichströme im Innern von Schnürring zu Schnürring


AP nur an Axon oder -hügel auslösbar!
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
45
Kartenlink
0
Verschlüsselung der Information durch Aktionspotenziale
Frenquenzcodierung
nicht Amplitude!
Alles-oder-nichts-Ereignis
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
46
Kartenlink
0
Multiple Sklerose
  • Entzündung im ZNS: Bei einem Schub verlassen B- und T- Zellen die Blutgefäße und durchdringen die Blut-Hirn-Schranke
  • setzen Entzündungsstoffe frei, die die Hüllzellen angreifen -> Weiterleitung AP gestört
  • irreparable Schäden
  • Symptome hängen von Gehirnteil und Grad der Zerstörung ab
  • Autoimmunkrankheit
  • unklar, warum nur im ZNS
  • keine Antigene gefunden
  • als Auslöser verschiedene Faktoren diskutiert
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
47
Kartenlink
0
Informationsübertragung an Synapsen
  • AP aus dem Axon erreicht das synaptische Endknöpfchen
  • Spannungsänderung -> Öffnung spannungsgesteuerte Ca2+ Kanäle
  • Wanderung von Vesikeln mit Transmittermolekülen zur präsynaptischen Membran
  • Verschmelzung mit Membran -> Entleerung Transmittermoleküle in den synaptischen Spalt
  • Diffusion -> Andocken an passende Rezeptoren an der postsynaptischen Membran
  • Öffnung Na+ Kanäle -> Einströmen in postsynaptische Zellle
  • Depolarisation an der postsynaptischen Membran = EPSP (erregendes/excitatorisches postsynaptisches Potenzial) -> Ausbreitung entlang der Membran
  • Enzyme spalten Transmitter an den Rezeptoren -> Teilstücke lösen sich -> Schließung Kanäle
  • Transport der Produkte in die präsynaptische Zelle -> Neusynthese

Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
48
Kartenlink
0
Eigenschaften Rezeptorpotenzial
Reiztransduktion bei Sinneszellen

  • proportional zur Reizstärke
  • Ausbreitung elektrotonisch mit Abschwächung
  • führt zu Impulsfrequenzmodulation im Axon primärer Sinneszellen
  • modulierter Transmitterfreisetzung aus der Rezeptorzelle bei sekundären Sinneszellen
  • Impulsfrequenzmodulation im nachgeschalteten Neuron
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
49
Kartenlink
0
Neuronale Verrechnung
  • EPSP Depolarisation der postsynaptischen Zelle wirkt erregend -> wird Schwellenwert erreicht: AP im Axon
  • IPSP (inhibitorisches) wirkt hemmend -> K+ Ausstrom oder Cl-  Einstrom Kanäle statt Na+  -> Überschuss Anionen -> Hyperpolarisation
  • je weiter ein PSP wandert, desto schwächer wird es
  • je stärker und länger der Schwellenwert überschritten wird, desto größer die AP-Frequenz
  • zeitliche Summation
  • räumliche Summation
  • Konvergenz/Divergenz

Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
50
Kartenlink
0
Beeinflussung von Nervenzellen durch neuroaktive Stoffe
Schritt Förderung Hemmung
spannungsgest. Kanäle kein AP (Dauereinstrom / Ausgleich) kein AP (kein Wiederherstellen des Ladungsgefälles)
Ca2+ Einstrom Signalverstärkung kein/geringes Signal
Synthese Transmitter Störung Stoffwechsel keine Übertragung
Bildung Vesikel mehr Vesikel mit weniger Inhalt Störung kein Signal
Freisetzung Transmitter höhere Signalstärke keine Übertragung
Anlagerung an Rezeptoren verstärkte Wirkung kein PSP
Abbau Transmitter nur kurze Wirkung geringe Signalstärke Dauerreiz
Resynthese wieder schnell nachfolgendes übertragbar nicht mehr genügend Transmitter Störung bis kein Signal
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
51
Kartenlink
0
Riechen: Vom Reiz zum AP
  • Geruchsstoffe als Reiz von Riechsinneszellen aufgenommen
  • binden an Rezeptoren in den Cilien
  • Membranpotenzial der Zelle ändert sich = Rezeptorpotenzial
  • *Schwellenwert -> AP -> Über Axon weitergeleitet
  • Signaltransduktion : Übertragung Geruchsinformation in Veränderung Membranpotenzial
  • Axone führen in Bündeln zu Riechkolben
  • Verarbeitung Aktivierungsmuster im Gehirn
  • nicht reines Schlüssel-Schloss-Prinzip -> mehrere Rezeptortypen werden aktiviert
  • phasisch**

Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
52
Kartenlink
0
molekulare Vorgänge der Signaltransduktion bei Sinneszellen
Beispiel: Riechsinneszellen

  • Geruchsstoffmolekül bindet an Rezeptor in Cilienmembran
  • G-Protein wird aktiviert
  • Adenylatcyclase wird aktiviert: katalysiert Synthese von cyclischem AMP (cAMP) aus ATP
  • wirkt als Second messenger : Freisetzung als Antwort auf ein Signal in der Zielzelle/ intrazelluläre Übertragung des äußeren Signals
  • bindet an Ionenkanäle -> Ca2+ und Na+ können in die Zelle diffundieren
  • Depolarisation der Membran
  • Ca2+ lösen einen Cl-Ausstrom aus -> Verstärkung Rezeptorpotenzial
  • Schwellenwert -> AP
  • Weiterleitung Axon -> Riechkolben -> Gehirn
  • Verabeitung Gehirn = eigentliche Geruchswahrnehmung
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
53
Kartenlink
0
Mechanorezeptor
Druck (Reiz) wirkt direkt auf Ionenkanäle
Einstrom Kationen
Rezeptorpotenzial
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
54
Kartenlink
2
Thermorezeptor
Wärme (Reiz) wirkt auf ein Protein
öffnet danebenliegenden Ionenkanal
Einstrom Kationen
Rezeptorpotenzial
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
55
Kartenlink
0
Fotorezeptor
Licht wirkt auf ein Rezeptormolekül (Rhodopsin), das an ein G-Protein gekoppelt ist
Signalübertragung auf Phosphodiesterase
Schließung Ionenkanal, der durch cGMP kontrolliert wird

(hemmende Neurotransmitter)
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
56
Kartenlink
0
Adaptation von Rezeptoren
Änderung Empfindlichkeit von Rezeptoren bei gleichbleibender Reizstärke

tonisch
phasisch
phasisch-tonisch
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
57
Kartenlink
0
tonische Rezeptoren
konstante Impulsfrequenz (1 zu 1 übertragen)

z.B. Chemorezeptoren, Hören
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
58
Kartenlink
0
phasische Rezeptoren
Impulsfrequenzabfall auf 0
Schutz vor Übererregung, Energieersparnis, Fokus auf ReizÄNDERUNGEN

z.B. Geruch
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
59
Kartenlink
0
phasisch-tonische Rezeptoren
hohe Frequenz am Anfang
dann niedrigere konstante

energiesparend
zB. Sehen
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
60
Kartenlink
0
proximate Ursachen für Verhalten
unmittelbare Gründe, Wirkursachen
alle inneren Bedingungen
äußere Auslöser
soziale Bedingungen
Ontogenese
Vorerfahrungen, Reifungsprozesse
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
61
Kartenlink
0
ultimate Ursachen für Verhalten
evolutionsbiologische Zusammenhänge, grundlegende Ursachen
Anpassungswert, adaptiver Wert -> Nutzen für das Individuum Überleben, Fortpflanzungserfolg
Phylogenese -> Selektionsvorteil
Tags: 3. Semester, Biologie, Neurophysiologie
Quelle:
Kartensatzinfo:
Autor: sternchenEtoile
Oberthema: Biologie
Thema: Abiturwissen
Veröffentlicht: 27.03.2013
 
Schlagwörter Karten:
Alle Karten (158)
1. Semester (21)
1. semester (3)
3. Semester (26)
Basiskonzepte (1)
Biologie (59)
Gärung (3)
Neurophysiologie (26)
Missbrauch melden

Abbrechen
E-Mail

Passwort

Login    

Passwort vergessen?
Deutsch  English