Wie lässt sich eine zeitliche Änderungsrate in einem Schaubild veranschaulichen?
Für eine zeitliche Änderungsrate benötigt man zwei "Messpunkte" auf dem Schaubild. Die y-Werte sind hierbei die jeweiligen Bestände, die x-Werte die Zeitpunkte der Messungen.
Verbindet man die beiden Punkte durch eine Gerade (Sekante) und zeichnet zwischen den zwei Punkten das Steigungsdreieck, dann entspricht die Änderungsrate gerade dem Quotienten aus Hochhwert durch Rechtswert - also der Sekantensteigung.
(Je steiler die Sekante, umso größer ist die ÄndR des entsprechenden Bestandes.)
Verbindet man die beiden Punkte durch eine Gerade (Sekante) und zeichnet zwischen den zwei Punkten das Steigungsdreieck, dann entspricht die Änderungsrate gerade dem Quotienten aus Hochhwert durch Rechtswert - also der Sekantensteigung.
(Je steiler die Sekante, umso größer ist die ÄndR des entsprechenden Bestandes.)
Tags: Änderungsrate, Sekante, Sekantensteigung
Source:
Source:
Flashcard set info:
Author: www.mathematik-bw.de
Main topic: Mathematik
Topic: 10. Klasse
School / Univ.: Clara-Schumann-Gymnasium
City: Lahr
Published: 23.12.2009
Card tags:
All cards (47)
Ableitung (10)
Änderungsrate (9)
Anwendung (2)
Begriffe (17)
Definitionsmenge (1)
Extremstelle (2)
Funktion (8)
ganzrational (5)
Gerade (13)
Grad (1)
h-Methode (6)
hinreichend (3)
Intervalle (1)
Normale (2)
notwendig (2)
Nullstelle (5)
Produktform (3)
Sattelpunkt (3)
Schnittwinkel (1)
Sekante (1)
Sekantensteigung (1)
Steigungswinkel (3)
Streckung (1)
Symmetrie (3)
Tangente (7)
Terassenpunkt (3)
Verschiebung (7)
Wertemenge (1)