Was prüft der Jonckheere-Terpstra-Test? Welche Voraussetzung hat dieser?
Ähnlich wie in ANOVA kann auch nicht-parametrisch das Vorhandensein eines (monotonen) Trends untersucht werden - Jonckheere-Terpstra-Test
Test „funktioniert“ ähnlich wie H-Test (ist ebenso ein Omnibustest;
gleiche H0):
Test „funktioniert“ ähnlich wie H-Test (ist ebenso ein Omnibustest;
gleiche H0):
- H0: Die k Stichproben stammen aus formgleich (homomer) verteilten Populationen mit gleichem Median
- Allerdings wird auch eine Rangordnung in der unabhängigen Variable angenommen - Testrational entspricht einem additiven Verfahren einseitiger U-Tests
- H1: Die Mediane der k Stichproben folgen einer schwach monotonen Rangordnung: (an zumindest einer Stelle muss das „“ durch ein „“ ersetzbar sein)
- Anwendung des Jonckheere-Terpstra-Test setzt voraus, dass schon a priori Annahmen zur Rangreihung der unabhängigen Variable vorliegen (wie in ANOVA) - Prüfung dieser Annahme, keine a posteriori Bestätigung !
- Verfahren führt (asymptotisch, wenn N groß genug) zu einer z-verteilten Prüfstatistik
- Für Testung in SPSS muss die unabhängige Variable so kodiert sein, dass sie der zu testenden Rangreihung entspricht (analog in ANOVA)
Tags: Jonckheere-Terpstra-Test, nicht-parametrische Verfahren
Quelle: VO10
Quelle: VO10
Was zeigt dieser SPSS-Ausdruck:
nicht-parametrische Verfahren / k > 2 unabhängige Stichproben: Jonckheere-Terpstra-Test
- J-T-Statistiken dienen der Berechnung einer z-verteilten Prüfvariable („standardisierte J-TStatistik“)
- „Asymptotische Signifikanz“ basiert auf der Heranziehung der Standardnormalverteilung als Prüfverteilung - p < .001; die Mediane weisen eine monotone Ordnung auf(zur Erinnerung: Depressive = 31.50, Remittierte = 17,Gesunde = 7)
Tags: Jonckheere-Terpstra-Test, nicht-parametrische Verfahren, SPSS
Quelle: VO10
Quelle: VO10
Kartensatzinfo:
Autor: coster
Oberthema: Psychologie
Thema: Statistik
Schule / Uni: Universität Wien
Ort: Wien
Veröffentlicht: 21.06.2013
Schlagwörter Karten:
Alle Karten (175)
4-Felder-Tafel (17)
abhängige Daten (6)
ALM (1)
ANCOVA (3)
ANOVA (15)
Bindung (1)
Cohens d (10)
Cohens Kappa (6)
Effektgröße (31)
Einzelvergleich (2)
Einzelvergleiche (1)
Eta (7)
Fehler (1)
Friedman-Test (3)
H-Test (5)
Haupteffekt (2)
Haupteffekte (1)
Interaktion (5)
Jonckheere-Terpstra-Test (2)
Konkordanz (4)
Kontrast (11)
Kontrollvariable (1)
MANOVA (2)
McNemar-Test (4)
Mediantest (5)
Medientest (1)
mixed ANOVA (10)
NNT (3)
Normalverteilung (3)
NPV (4)
Nulldifferenzen (1)
odds ratio (7)
partielle Eta (5)
phi-Koeffizient (1)
Phi-Koeffizienz (1)
Planung (1)
Post-Hoc-Test (4)
Post-hoc-Tests (3)
Power (1)
PPV (4)
Prävalenz (6)
r (4)
Reliabilität (1)
risk ratio (7)
Sensitivität (6)
Signifikanz (6)
Spezifität (6)
Sphärizität (2)
SPSS (14)
SPss (1)
Stichprobe (3)
Störvariable (1)
t-Test (7)
Testmacht (2)
Trends (1)
U-Test (6)
Varianz (2)
Varianzanalyse (11)
Varianzschätzer (1)
Voraussetzungen (2)
Vorzeichentest (2)
Wechselwirkung (3)
Wilcoxon-Test (4)
x2-Test (5)