Was prüft der Kruska-Wallis-Test? Wie wird dieser noch genannt?
Kruskal-Wallis-Test (H-Test; Kruskal & Wallis, 1952) ist Verallgemeinerung der Prinzipien des U-Test für k > 2 Stichproben
„klassisches“ Pendant der einfaktoriellen ANOVA
H0: Die k Stichproben stammen aus formgleich (homomer) verteilten Populationen mit gleichem Median
H-Test beruht ebenso auf Berechnung von Rangsummen und mittleren Rängen wie U-Test und Wilcoxon-Rangsummentest
Teststatistik H (bei größeren Stichproben) χ2-verteilt, mit df = k − 1
„klassisches“ Pendant der einfaktoriellen ANOVA
H0: Die k Stichproben stammen aus formgleich (homomer) verteilten Populationen mit gleichem Median
H-Test beruht ebenso auf Berechnung von Rangsummen und mittleren Rängen wie U-Test und Wilcoxon-Rangsummentest
Teststatistik H (bei größeren Stichproben) χ2-verteilt, mit df = k − 1
- Ebenso wie für U-Test gibt es eine Bindungskorrektur - vergrößert Wert der Teststatistik, führt eher zur Verwerfung der H0
- Alternativhypothese des H-Tests nur ungerichtet (Omnibustest)
- Bei kleinen Stichproben exakter Test, ansonsten asymptotischer Test - Asymptotischer Test hinreichend genau, wenn kleinste Stichprobe > 5
- Mediantest kann (ebenso wie im Fall k = 2) auch im Fall k > 2 mächtiger sein als H-Test; i. A. hat H-Test aber mehr Macht (mehr Information)
Tags: H-Test, Kruska-Wallis-Test, nicht-parametrische Verfahren
Quelle: VO10
Quelle: VO10
Wie lassen sich beim Kruska-Wallis-Test (H-Test) Effekte berechnen?
Analog zu U-Test lassen sich relative Effekte berechnen
Stochastische Tendenz, dass Personen der j-ten Gruppe höhere Werte als durchschnittlich alle anderen Gruppen erzielten
Welche Gruppen sich bei signifikantem Omnibustest signifikant
voneinander unterscheiden, kann im H-Test (analog zur ANOVA) mittels Kontrasten und Post-Hoc-Prozeduren untersucht werden.
Stochastische Tendenz, dass Personen der j-ten Gruppe höhere Werte als durchschnittlich alle anderen Gruppen erzielten
Welche Gruppen sich bei signifikantem Omnibustest signifikant
voneinander unterscheiden, kann im H-Test (analog zur ANOVA) mittels Kontrasten und Post-Hoc-Prozeduren untersucht werden.
Tags: H-Test, Kruska-Wallis-Test, nicht-parametrische Verfahren
Quelle: VO10
Quelle: VO10
Wie lässt sich bei einem Kruska-Wallis-Test (H-Test) der familywise error kontrollieren? Beschreibe diese.
Familywise error wird implizit (Kontraste) oder explizit (Post-Hoc-Tests) kontrolliert.
Kontraste
Berechnung der kritischen Differenzen
Durch Verwendung von wird eine implizite Fehlerkontrolle angewandt - familywise error bleibt auf gewähltem α-Niveau
Post-Hoc-Tests:
2 äquivalente Methoden:
Explizite Fehlerkontrolle: Bonferroni-Korrektur als einfachste Methode:
Kritische Differenzen nach Siegel und Castellan mit expliziter
Fehlerkontrolle
Größe der kritischen Differenzen (implizite/explizite Fehlerkontrolle) abhängig von der Größe der verglichenen Stichproben (= Nj)
Sind Stichproben nicht gleich groß, müssen für jeden Vergleich unterschiedliche kritische Differenzen bestimmt werden
Kontraste
Berechnung der kritischen Differenzen
Durch Verwendung von wird eine implizite Fehlerkontrolle angewandt - familywise error bleibt auf gewähltem α-Niveau
Post-Hoc-Tests:
2 äquivalente Methoden:
- Testung aller interessierenden (!) Vergleiche mittels U-Tests
- Bestimmung der kritischen Differenzen nach Siegel und Castellan (1988)
Explizite Fehlerkontrolle: Bonferroni-Korrektur als einfachste Methode:
- Werden alle k Gruppen miteinander verglichen, kann α* sehr niedrig und die Testung damit sehr konservativ werden !
- A priori Auswahl und Beschränkung auf jene Vergleiche, die von Interesse sind - m‘ (= Anzahl dieser Vergleiche) ist dann kleiner als m und Testung damit weniger konservativ
Kritische Differenzen nach Siegel und Castellan mit expliziter
Fehlerkontrolle
- ist kritischer z-Wert von α* - kann aus Tabellen abgelesen werden
- Vorgehen ist äquivalent zur Anwendung sequentieller U-Tests
Größe der kritischen Differenzen (implizite/explizite Fehlerkontrolle) abhängig von der Größe der verglichenen Stichproben (= Nj)
Sind Stichproben nicht gleich groß, müssen für jeden Vergleich unterschiedliche kritische Differenzen bestimmt werden
Tags: Effektgröße, H-Test, Kontrast, Kruska-Wallis-Test, Post-Hoc-Test
Quelle: VO10
Quelle: VO10
Was zeigt der SPSS-Ausdruck zu diesem Beispiel:
In Untersuchung der BDI-Werte von Depressiven, Remittierten und Gesunden war in der Gruppe der Gesunden keine Normalverteilung gegeben.
Kann Ergebnis der ANOVA mit nicht-parametrischen Methoden bestätigt werden?
In Untersuchung der BDI-Werte von Depressiven, Remittierten und Gesunden war in der Gruppe der Gesunden keine Normalverteilung gegeben.
Kann Ergebnis der ANOVA mit nicht-parametrischen Methoden bestätigt werden?
Ränge:
Mittlere Ränge: niedrigste bei den Gesunden, höchste bei den Depressiven
Statistik für Test
Testergebnis signifikant - p < .001
Zum Vergleich:
Mediantest ebenso signifikant (p < .001), geringere Testmacht zeigt sich aber in niedrigerem χ2-Wert (χ2 = 58.65, df = 2)
Mittlere Ränge: niedrigste bei den Gesunden, höchste bei den Depressiven
Statistik für Test
Testergebnis signifikant - p < .001
Zum Vergleich:
Mediantest ebenso signifikant (p < .001), geringere Testmacht zeigt sich aber in niedrigerem χ2-Wert (χ2 = 58.65, df = 2)
Tags: H-Test, Kruska-Wallis-Test, nicht-parametrische Verfahren, SPSS
Quelle: VO10
Quelle: VO10
Wie kann man die relativen Effekte bei diesem Beispiel interpretieren?
Gesunde haben die niedrigste Wahrscheinlichkeit höhere Werte als alle anderen aufzuweisen, Depressive haben die höchste Wahrscheinlichkeit
Tags: Effektgröße, H-Test, Kruska-Wallis-Test, nicht-parametrische Verfahren
Quelle: VO10
Quelle: VO10
Kartensatzinfo:
Autor: coster
Oberthema: Psychologie
Thema: Statistik
Schule / Uni: Universität Wien
Ort: Wien
Veröffentlicht: 21.06.2013
Schlagwörter Karten:
Alle Karten (175)
4-Felder-Tafel (17)
abhängige Daten (6)
ALM (1)
ANCOVA (3)
ANOVA (15)
Bindung (1)
Cohens d (10)
Cohens Kappa (6)
Effektgröße (31)
Einzelvergleich (2)
Einzelvergleiche (1)
Eta (7)
Fehler (1)
Friedman-Test (3)
H-Test (5)
Haupteffekt (2)
Haupteffekte (1)
Interaktion (5)
Konkordanz (4)
Kontrast (11)
Kontrollvariable (1)
Kruska-Wallis-Test (5)
MANOVA (2)
McNemar-Test (4)
Mediantest (5)
Medientest (1)
mixed ANOVA (10)
NNT (3)
Normalverteilung (3)
NPV (4)
Nulldifferenzen (1)
odds ratio (7)
partielle Eta (5)
phi-Koeffizient (1)
Phi-Koeffizienz (1)
Planung (1)
Post-Hoc-Test (4)
Post-hoc-Tests (3)
Power (1)
PPV (4)
Prävalenz (6)
r (4)
Reliabilität (1)
risk ratio (7)
Sensitivität (6)
Signifikanz (6)
Spezifität (6)
Sphärizität (2)
SPSS (14)
SPss (1)
Stichprobe (3)
Störvariable (1)
t-Test (7)
Testmacht (2)
Trends (1)
U-Test (6)
Varianz (2)
Varianzanalyse (11)
Varianzschätzer (1)
Voraussetzungen (2)
Vorzeichentest (2)
Wechselwirkung (3)
Wilcoxon-Test (4)
x2-Test (5)