Was ist der unterschied zwischen parametrischen und nicht-parametrischen Verfahren hinsichtlich
- Effizienz
- Messniveau
- Voraussetzungen
- Effizienz
- Messniveau
- Voraussetzungen
Effizienz
Messniveau
Mathematisch-statistische Voraussetzungen
- Prüfung der Voraussetzungen für parametrische Tests jedoch häufig problematisch
- Erfolgt i. d. R. anhand der Stichprobe
- Voraussetzungen beziehen sich aber eigentlich auf Populationscharakteristika
- Bei Zutreffen ihrer Voraussetzungen haben parametrische Verfahren i. A. eine größere Effizienz - höhere Testmacht (p-Werte kleiner)
- Treffen Voraussetzungen nicht zu nicht-parametrische Methoden i. d. R. effizienter
Messniveau
- Metrisches Messniveau für parametrische Tests
- für alle anderen Skalenniveaus muss nicht-parametrisch getestet werden
Mathematisch-statistische Voraussetzungen
- Parametrische Verfahren stellen immer Voraussetzungen an die Verteilung der Daten
- Nicht-parametrische Verfahren benötigen ebenso öfter stetige Variablen und häufig auch die Homogenität der Populationsverteilungen
- Prüfung der Voraussetzungen für parametrische Tests jedoch häufig problematisch
- Erfolgt i. d. R. anhand der Stichprobe
- Voraussetzungen beziehen sich aber eigentlich auf Populationscharakteristika
Tags: nicht-parametrische Verfahren, parametrische Verfahren, Voraussetzungen
Quelle: VO09
Quelle: VO09
Welche Probleme gibt es bei Voraussetzungstest für parametrische Verfahren?
Prüfung der Voraussetzungen für parametrische Tests jedoch häufig problematisch: Erfolgt i. d. R. anhand der Stichprobe, Voraussetzungen beziehen sich aber eigentlich auf Populationscharakteristika
Probleme von Voraussetzungstests
Werden kleine Stichproben untersucht, können Voraussetzungen parametrischer Verfahren häufig nur ungenügend untersucht werden
Autoren wie Bortz und Lienert (2008, S. 59) plädieren deshalb dafür, bei kleineren Stichproben (N < 30) grundsätzlich nicht-parametrisch zu testen
Zentrales Grenzwerttheorem
Besagt, dass z.B. Mittelwerte sich ab etwa N = 30 normalverteilen, unabhängig von eigentlicher Verteilung der Messwerte - trägt zur Robustheit parametrischer Verfahren bei
Generell lässt sich folgern, dass, wenn nur kleine Stichproben (N < 30) untersucht werden können (vgl. Bortz & Lienert, 2008, S. 52)
Probleme von Voraussetzungstests
- beruhen meist ebenso auf parametrischen Voraussetzungen z.B. F-Test zur Überprüfung der Homogenität von Varianzen beruht auf der Annahme der Normalverteilung der Daten
- ' Stichprobengröße (vgl. Kapitel zu Effektgrößen) - kleines N - geringe Testmacht - Verletzungen werden u. U. nicht erkannt- großes N - hohe Testmacht - bereits unbedeutende Abweichungen werden auffällig
Werden kleine Stichproben untersucht, können Voraussetzungen parametrischer Verfahren häufig nur ungenügend untersucht werden
Autoren wie Bortz und Lienert (2008, S. 59) plädieren deshalb dafür, bei kleineren Stichproben (N < 30) grundsätzlich nicht-parametrisch zu testen
Zentrales Grenzwerttheorem
Besagt, dass z.B. Mittelwerte sich ab etwa N = 30 normalverteilen, unabhängig von eigentlicher Verteilung der Messwerte - trägt zur Robustheit parametrischer Verfahren bei
Generell lässt sich folgern, dass, wenn nur kleine Stichproben (N < 30) untersucht werden können (vgl. Bortz & Lienert, 2008, S. 52)
- Nicht-parametrisch getestet werden sollte
- Möglichst große Effekte untersucht werden sollten
- Signifikante Ergebnisse i. d. R. auch auf große Effekte schließen lassen - Replikation wichtig !
Tags: nicht-parametrische Verfahren, parametrische Verfahren, Voraussetzungen
Quelle: VO09
Quelle: VO09
Kartensatzinfo:
Autor: coster
Oberthema: Psychologie
Thema: Statistik
Schule / Uni: Universität Wien
Ort: Wien
Veröffentlicht: 21.06.2013
Schlagwörter Karten:
Alle Karten (175)
4-Felder-Tafel (17)
abhängige Daten (6)
ALM (1)
ANCOVA (3)
ANOVA (15)
Bindung (1)
Cohens d (10)
Cohens Kappa (6)
Effektgröße (31)
Einzelvergleich (2)
Einzelvergleiche (1)
Eta (7)
Fehler (1)
Friedman-Test (3)
H-Test (5)
Haupteffekt (2)
Haupteffekte (1)
Interaktion (5)
Konkordanz (4)
Kontrast (11)
Kontrollvariable (1)
MANOVA (2)
McNemar-Test (4)
Mediantest (5)
Medientest (1)
mixed ANOVA (10)
NNT (3)
Normalverteilung (3)
NPV (4)
Nulldifferenzen (1)
odds ratio (7)
partielle Eta (5)
phi-Koeffizient (1)
Phi-Koeffizienz (1)
Planung (1)
Post-Hoc-Test (4)
Post-hoc-Tests (3)
Power (1)
PPV (4)
Prävalenz (6)
r (4)
Reliabilität (1)
risk ratio (7)
Sensitivität (6)
Signifikanz (6)
Spezifität (6)
Sphärizität (2)
SPSS (14)
SPss (1)
Stichprobe (3)
Störvariable (1)
t-Test (7)
Testmacht (2)
Trends (1)
U-Test (6)
Varianz (2)
Varianzanalyse (11)
Varianzschätzer (1)
Voraussetzungen (2)
Vorzeichentest (2)
Wechselwirkung (3)
Wilcoxon-Test (4)
x2-Test (5)