Wie wird die Testmacht (Power) festgelegt bzw. wie kann dies vergrößert werden?
Bei Fixierung von Signifikanzniveau, Effektgröße und N kann Power einer Studie berechnet werden
- Aussagen dazu, ob eine Untersuchung mit gegebenem N genug Power besitzt, um einen angenommenen Effekt nachweisen zu können
Hohe Power für empirische Untersuchungen eminent wichtig – wozu überhaupt eine Untersuchung machen, wenn keine reelle Chance für den Erhalt eines verwertbaren (= statistisch bedeutsamen) Ergebnisses besteht?
Power ist nicht nur an N gebunden.
Power lässt sich ebenso durch Studiendesign vergrößern
Poweranalysen (a priori Berechnungen der Stichprobengröße) sind in moderner klinischer Forschung Standard - (obligatorischer) Teil von Studienprotokollen und Anträgen für
Forschungsförderung.
- Aussagen dazu, ob eine Untersuchung mit gegebenem N genug Power besitzt, um einen angenommenen Effekt nachweisen zu können
Hohe Power für empirische Untersuchungen eminent wichtig – wozu überhaupt eine Untersuchung machen, wenn keine reelle Chance für den Erhalt eines verwertbaren (= statistisch bedeutsamen) Ergebnisses besteht?
Power ist nicht nur an N gebunden.
Power lässt sich ebenso durch Studiendesign vergrößern
- Vergrößerung zu untersuchender Effekte - Untersuchung homogener Samples – dadurch werden zufällige Varianzen kleiner und die Mittelwertsunterschiede größer- Matching und Parallelisierung: Varianzen werden hier reduziert. – Effekt wird vergrößert- Untersuchung von Extremgruppen: innerhalb der beiden Gruppen sind diese homogen.- Erhöhung der Dosis: mehr oder längere Interventionen- Outcomes untersuchen, die am direktesten das interessierende Konstrukt abbilden/repräsentieren
- Reduzierung des Messfehlers - Messinstrumente mit kleinem Messfehler verwenden, d.h. Instrumente mit nachgewiesen hoher Reliabilität
- (Erhöhung von α) wird man eher nicht erhöhen, da auch der Fehler 2. Art erhöht (Verwerfen der H0 obwohl die H0 gilt) wird
Poweranalysen (a priori Berechnungen der Stichprobengröße) sind in moderner klinischer Forschung Standard - (obligatorischer) Teil von Studienprotokollen und Anträgen für
Forschungsförderung.
Tags: Power, Testmacht
Quelle: VO08
Quelle: VO08
Kartensatzinfo:
Autor: coster
Oberthema: Psychologie
Thema: Statistik
Schule / Uni: Universität Wien
Ort: Wien
Veröffentlicht: 21.06.2013
Schlagwörter Karten:
Alle Karten (175)
4-Felder-Tafel (17)
abhängige Daten (6)
ALM (1)
ANCOVA (3)
ANOVA (15)
Bindung (1)
Cohens d (10)
Cohens Kappa (6)
Effektgröße (31)
Einzelvergleich (2)
Einzelvergleiche (1)
Eta (7)
Fehler (1)
Friedman-Test (3)
H-Test (5)
Haupteffekt (2)
Haupteffekte (1)
Interaktion (5)
Konkordanz (4)
Kontrast (11)
Kontrollvariable (1)
MANOVA (2)
McNemar-Test (4)
Mediantest (5)
Medientest (1)
mixed ANOVA (10)
NNT (3)
Normalverteilung (3)
NPV (4)
Nulldifferenzen (1)
odds ratio (7)
partielle Eta (5)
phi-Koeffizient (1)
Phi-Koeffizienz (1)
Planung (1)
Post-Hoc-Test (4)
Post-hoc-Tests (3)
Power (1)
PPV (4)
Prävalenz (6)
r (4)
Reliabilität (1)
risk ratio (7)
Sensitivität (6)
Signifikanz (6)
Spezifität (6)
Sphärizität (2)
SPSS (14)
SPss (1)
Stichprobe (3)
Störvariable (1)
t-Test (7)
Testmacht (2)
Trends (1)
U-Test (6)
Varianz (2)
Varianzanalyse (11)
Varianzschätzer (1)
Voraussetzungen (2)
Vorzeichentest (2)
Wechselwirkung (3)
Wilcoxon-Test (4)
x2-Test (5)