CoboCards App FAQ & Wishes Feedback
Language: English Language
Sign up for free  Login

Get these flashcards, study & pass exams. For free! Even on iPhone/Android!

Enter your e-mail address and import flashcard set for free.  
Go!
All main topics / Psychologie / Statistik

VO Ausgewählte Methoden (175 Cards)

Say thanks
13
Cardlink
0
Was bedeutet das Kontraste orthogonal oder nicht orthogonal sein können?
Kontraste können orthogonal oder nicht-orthogonal sein: Kontraste die orthogonal sind, bezeichnet das es Tests sind die statistisch unabhängig sind.

Zwei Kontraste sind orthogonal, wenn die Summe der Produkte ihrer Koeffizienten Null ist:
(es können numerisch beliebige Werte gewählt werden, solange sie null ergeben)


Abhängig davon wieviele Gruppen man definiert hat, kann eine bestimmte Anzahl an orthogonalen Kontrasten definiert werden (k-1 orthogonale Kontraste) (k=Anzahl der Gruppen)

Beispiel: 3 Gruppen = 2 orthogonale Kontraste (man kann auch andere Kontraste formulieren, diese sind aber dann nicht orthogonal)
Tags: Kontrast, Polynomiale Kontraste
Source: VO02
14
Cardlink
0
Welche Arten von Kontraste bietet SPSS zur Beobachtung von Trends an?

Trends: Reihung/Anordnung von Gruppen = Polynomiale Kontraste

linear: mind 2. Gruppen um dies eindeutig festlegen zu können
quadratisch (mind 3 Gruppen): 1 Gruppe hohe, 2. Gruppe niedrige, 3. Gruppe hohe Werte
kubisch (mind. 4 Gruppen notwendig)
Tags: Polynomiale Kontraste, Trends
Source: VO02
15
Cardlink
0
Was sind polynomiale Kontraste? Wann kann dies sinnvoll berechnet werden?
Polynomiale Kontraste: Trends/Reihung/ordinaler Funktion von Gruppen (linear, quadratisch, kubisch)

Polynomiale Kontraste sind zueinander alle orthogonal.

Nur nützlich, wenn Gruppen sinnvolle und nicht beliebige Ordnung aufweisen (a-priori Ordnung muss bekannt sein).

Außerdem setzen polynomiale Kontraste das Prinzip Äquidistanz der Faktorstufen voraus (Gruppierungsvariable müsste ebenso intervallskaliert sein).
(dh. Die Depressiven sind von den Remittierten gleich weit entfernt sind wie die Gesunden von den Remittierten)

Polynomiale Kontraste können auch durch eigene Gewichtsetzung berechnet werden (Beispiel für linearen und quadratischen Kontrast).
Tags: Polynomiale Kontraste
Source: VO02
16
Cardlink
0
Was zeigt dieser SPSS-Ausdruck/Graph?


Bei einem Freiheitsgrad (df=1) korrelieren F- und t-Test miteinander.

Polynomiale Kontraste werden immer zweiseitig getestet! (Bei dieser Testung ist also keine "Seitigkeit" verbunden)

Lineare Trend: es gibt eine ansteigende/absteigender Trend vor.
Auch in der grafischen Darstellung ist ein absteigender Trend sichtbar - dieser scheint linear zu sein, könnte ev. aber auch quadratisch sein.

Jetzt wurde noch eine weitere Auswertung durchgeführt (quadratisch):

Gruppenmittelwerte weisen nicht nur linearen Trend auf (p < .001), sondern auch quadratischen (p = .001)

Inhaltlich bedeutet dies hier, dass die Gruppenmittelwerte der Gesunden und Remittierten offenbar näher beieinander liegen, als jene der Remittierten und Depressiven (d.h. es existiert anscheinend keine Äquidistanz)
Tags: Polynomiale Kontraste
Source: VO02
17
Cardlink
0
Welche unterschiedlichen Berechnungsmöglichkeiten für Kontraste/Einzelvergleiche können in SPSS gewählt werden? Was kennzeichnet diese?
Weitere (wählbare) Kontraste in der SPSS Prozedur ‚Allgemeines Lineares Modell‘.
Neben den polynomialen Kontrasten oder den selber wählbaren Kontrasten gibt es folgende:

(3 Kontraste sind nicht orthogonal)
  • Einfacher Kontrast häufig verwendet eine Referenzgruppe wird mit allen anderen Gruppen verglichen
  • Anmerkung: die Referenzgruppe die getestet werden möchte muss in SPSS zu Beginn oder am Ende kodiert sein.Es wird immer die gleiche Referenzgruppe genommen die mit den anderen Gruppen jeweils verglichen wird.Ist vor allem bei Versuchs-Kontrollgruppen-Designs.
  • Differenz und Helmert im Prinzip gleiche Prozedur – einmal „von oben nach unten“ (Differenz), das andere Mal von „unten nach oben“ (Helmert)
  • Differenz: Jeder Mittelwert der Gruppe wird mit dem Mittelwert der vorhergehenden Gruppe verglichen
  • Wiederholt eignet sich, um sequenziell alle paarweisen Mittelwertsunterschiede zu testen
  • Gruppe1 mit Gruppe 2, Gruppe 2 und Gruppe 3, Gruppe 3 mit Gruppe 4
Tags: Kontrast, Polynomiale Kontraste, SPSS
Source: VO02
Flashcard set info:
Author: coster
Main topic: Psychologie
Topic: Statistik
School / Univ.: Universität Wien
City: Wien
Published: 21.06.2013
Tags: Tran, SS2013
 
Card tags:
All cards (175)
4-Felder-Tafel (17)
abhängige Daten (6)
ALM (1)
ANCOVA (3)
ANOVA (15)
Bindung (1)
Cohens d (10)
Cohens Kappa (6)
Effektgröße (31)
einfaktorielle ANOVA (6)
Einzelvergleich (2)
Einzelvergleiche (1)
Eta (7)
Fehler (1)
Friedman-Test (3)
H-Test (5)
Haupteffekt (2)
Haupteffekte (1)
Interaktion (5)
Interraterreliabilität (13)
Jonckheere-Terpstra-Test (2)
Konfidenzintervall (3)
Konkordanz (4)
Kontrast (11)
Kontrollvariable (1)
Kruska-Wallis-Test (5)
MANOVA (2)
McNemar-Test (4)
Mediantest (5)
Medientest (1)
mehrfaktorielle ANOVA (5)
mixed ANOVA (10)
nicht-parametrische Verfahren (36)
nicht-parametrische Verfahrenh (1)
NNT (3)
Normalverteilung (3)
NPV (4)
Nulldifferenzen (1)
odds ratio (7)
Optimaler Stichprobenumfang (4)
parametrische Verfahren (5)
partielle Eta (5)
phi-Koeffizient (1)
Phi-Koeffizienz (1)
phi-Korrelationskoeffizient (1)
Planung (1)
Polynomiale Kontraste (5)
Post-Hoc-Test (4)
Post-hoc-Tests (3)
Power (1)
PPV (4)
Prävalenz (6)
Produkt-Moment-Korrelation (1)
r (4)
Reliabilität (1)
risk ratio (7)
Sensitivität (6)
Signifikanz (6)
simple effects analysis (1)
Spezifität (6)
Sphärizität (2)
SPSS (14)
SPss (1)
Stichprobe (3)
Störvariable (1)
t-Test (7)
Testmacht (2)
Trends (1)
U-Test (6)
Varianz (2)
Varianzanalyse (11)
Varianzhomogenität (1)
Varianzschätzer (1)
Voraussetzungen (2)
Vorzeichentest (2)
Wechselwirkung (3)
Wilcoxon-Test (4)
x2-Test (5)
zweifaktorielle ANOVA (15)
Report abuse

Cancel
Email

Password

Login    

Forgot password?
Deutsch  English